In-Band $\alpha$-Duplex Scheme for Cellular Networks: A Stochastic Geometry Approach
نویسندگان
چکیده
In-band full-duplex (FD) communications have been optimistically promoted to improve the spectrum utilization and efficiency. However, the penetration of FD communications to the cellular networks domain is challenging due to the imposed uplink/downlink interference. This paper presents a tractable framework, based on stochastic geometry, to study FD communications in cellular networks. Particularly, we assess the FD communications effect on the network performance and quantify the associated gains. The study proves the vulnerability of the uplink to the downlink interference and shows that FD rate gains harvested in the downlink (up to 97%) come at the expense of a significant degradation in the uplink rate (up to 94%). Therefore, we propose a novel fine-grained duplexing scheme, denoted as αduplex scheme, which allows a partial overlap between the uplink and the downlink frequency bands. We derive the required conditions to harvest rate gains from the α-duplex scheme and show its superiority to both the FD and half-duplex (HD) schemes. In particular, we show that the α-duplex scheme provides a simultaneous improvement of 28% for the downlink rate and 56% for the uplink rate. Finally, we show that the amount of the overlap can be optimized based on the network design objective. Index Terms Full duplex, half duplex, stochastic geometry, network interference, partial overlap, error probability, outage probability, ergodic rate.
منابع مشابه
On Joint Sub-channel Allocation, Duplexing Mode Selection, and Power Control in Full-Duplex Co-Channel Femtocell Networks
As one of the promising approaches to increase the network capacity, Full-duplex (FD) communications have recently gained a remarkable attention. FD communication enables wireless nodes to simultaneously send and receive data through the same frequency band. Thanks to the recent achievements in the self-interference (SI) cancellation, this type of communication is expected to be potentially uti...
متن کاملFlexible Design for $\alpha$-Duplex Communications in Multi-Tier Cellular Networks
Backward compatibility is an essential ingredient for the success of new technologies. In the context of in-band full-duplex (FD) communication, FD base stations (BSs) should support half-duplex (HD) users’ equipment (UEs) without sacrificing the foreseen FD gains. This paper presents flexible and tractable modeling framework for multi-tier cellular networks with FD BSs and FD/HD UEs. The prese...
متن کاملCan Uplink Transmissions Survive in Full-duplex Cellular Environments?
In-band full-duplex (FD) communication is considered a potential candidate to be adopted by the fifth generation (5G) cellular networks. FD communication renders the entire spectrum simultaneously accessible by uplink and downlink, and hence, is optimistically promoted to double the transmission rate. While this is true for a single communication link, cross-mode interference (i.e., interferenc...
متن کاملA Two-Threshold Guard Channel Scheme for Minimizing Blocking Probability in Communication Networks
In this paper, we consider the call admission problem in cellular network with two classes of voice users. In the first part of paper, we introduce a two-threshold guard channel policy and study its limiting behavior under the stationary traffic. Then we give an algorithm for finding the optimal number of guard channels. In the second part of this paper, we give an algorithm, which minimizes th...
متن کاملAn Incentive-Aware Lightweight Secure Data Sharing Scheme for D2D Communication in 5G Cellular Networks
Due to the explosion of smart devices, data traffic over cellular networks has seen an exponential rise in recent years. This increase in mobile data traffic has caused an immediate need for offloading traffic from operators. Device-to-Device(D2D) communication is a promising solution to boost the capacity of cellular networks and alleviate the heavy burden on backhaul links. However, dir...
متن کامل